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SUMMARY 

Linearized, multidimensional, thermally driven flow in a gas centrifuge can be approximately described in 
regions away from the ends by Onsager’s homogeneous pancake equation.’ Upon reformulation of the 
general problem, we find a new, simple and rigorous closed form, analytical solution by assuming a special 
separable solution and replacing the usual Ekman end cap boundary conditions with idealized impermeable, 
free slip boundary conditions. Then the flow may be described by an ordinary differential equation with 
solutions in terms of simple, classical functions. By identifying a small parameter, say E,  defining the 
semi-long bowl approximation, and assuming a power series expansion in E ,  a sequence of asymptotic 
approximations to the master potential is obtained. Not surprisingly, the leading order term involves the 
well known ‘long bowl’ solution. Using the so-called ‘solving’ property of the 1-D pancake Green’s function,’ 
we determine the next higher order solution. This recursive process is carried out on the computer to find 
all the terms up to O(c4). 

Consequently, the solution of some complex rotating, viscous, heat conducting flow problems that 
normally require large mainframe computers can be better understood. 

KEYWORDS Computer Extended Series Gas Centrifuge Theory MACSYMA 

INTRODUCTION 

As a model of the gas flow inside a real centrifuge, we consider Onsager’s pancake equation 
with sources and sinks and compressible Ekman boundary layers at the horizontal surfaces. 
This is, of course, the approximation of the linearized compressible Navier-Stokes equations 
first derived for thermal drive and solved by Onsager’ 

Lf = L6i  + B Z f y y  = F ( x ,  y), ( 1 )  
where 2 is the master potential and 

L 6 i  = [ex(exl?xx)xxlxx~ 

subject to 9 boundary conditions: 

Re 
;XX(O, Y )  = i X X ( O 9  Y )  = 0, L , i ( O ?  Y )  = j j p @ , ( Y ) ’  
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where 

and 

The stream function is 

‘F = - 2 A 2 z x .  

The inhomogeneity due to internal sources and sinks in Onsager’s equation is3 

B~ 
( Ty - 2Vy)dx’ - -[(ex uy)x + (ex @xxl, B 2 A 2  O3 

2ReS Ix 2ReS 
F(x, y) = - (3) 

where the mass source/sink term is neglected, and the tilde is introduced to designate 
a multivariate function. Other related analytical work in two dimensions is that of Wood 
and M ~ r t o n . ~  They used the natural eigenfunctions which give the solutions as a doubly 
infinite generalized Fourier series in terms of special functions. But more importantly, they 
derived the inhomogeneities in (3). The rest of the 2-D work on this equation or its variants 
is numerical, using either finite elements’ or finite differences4 or the method of lines,5 
etc. Recently, after one not-so-small trick taken from the computational fluid dynamicists 
(i.e. the method of lines), this problem has been recast into a more tractable form. Herein 
we treat only the thermal wall drive. Our approach is more interesting than prior work 
from the viewpoint of understanding the approximate structure and physics of the solutions. 
It has the additional advantage of making the computations for this special set of natural 
drives a more or less trivial microcomputer programming exercise. That is, the resultant 
analytical formulae can be readily implemented on a small computer. 

Van Dyke6,’ talks about computing hundreds and hundreds (maybe even thousands) 
of terms of regular perturbation expansions using his FORTRAN language computer codes. 
His goal, I think, is to extend the radius of convergence, to infinity if possible, to describe 
the exact solution structure. I suppose this is what he means by computer extension of series. 
What we seek is a broader understanding of the dependencies of our solution rather than just 
the numerical coefficients of the powers of the small expansion parameter. For a better 
understanding of the pancake equation perhaps it makes more sense to have the first few terms 
in the expansion complete in all their glorious detail. This non-trivial goal is achieved with the 
aid of the MACSYMA symbolic manipulation code’ for the quadratures. The idea here is that a 
simple formula is worth a thousand numbers. Furthermore, we are of the opinion that exact 
solutions to the asymptotic form of the approximate gas centrifuge equations of fluid motion 
make more sense than ad hoc constructs sometimes given for thermal drive, scoop drive and feed 
drive.’ For instance, had Olander’ assumed a half sine wave for the axial variation of the thermal 
drive instead of a modified parabolic curve fit, he would have correctly modelled the leading 
order thermal drive term. Perhaps this shows the essential difference between an ‘engineering’ 
or seat-of-the-pants approach and a ‘rigorous’ mathematical approach. In a companion paper 
we report on the corresponding results for the internal source/sinks. 

TWO DIMENSIONAL ANALYSIS 

Generalizing Viecelli’s t r i ~ k , ~  assume a ‘special’ separable solution (i.e. a 1-term Fourier sine 
series) of the form 
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j ( x ,  y )  = ~ ( x )  sin (Nny /yo ) ,  N = 1,2,3,. . . (4) 
and replace the Ekman end cap boundary conditions with simpler impermeable free slip boundary 
conditions. Although Ekman layers present no extraordinary difficulties in robust numerical 
techniques they overly complicate pure analysis. Anyway, Ekman boundary layers are responsible 
for only about 10 per cent of the recirculation for a May machine in thermal drive at 700mps.' 
It would be gladdening to be able to predict the hydrodynamics with 10 per cent error. Assuming 
that the thermo-fluid parameter B is arbitrary, i.e. B 2 0, 

( 5 )  

(6) 

L 6 X ( x )  - E 2 X ( x )  = F ( x ) ,  

X X ( 0 )  = X X X ( 0 )  = 09 

where E = BNn/yo .  Boundary conditions are 

assuming that sin ( N n y / y O )  # 0. If 8 = O ( x )  cos (Nny /yO) ,  then 

for sin (Nnyly,)  # 0, where, 

- N71 
Y o  

B,(O) = -B(O). 

AS x+  co, 

for sin (Nny /yO) ,  cos ( N n y / y O )  # 0. At the horizontal ends we assume impermeable end caps 
as a convenient approximation: 

But these approximate end cap boundary conditions are satisfied exactly by construction. 
Unfortunately, the types and shapes of boundary conditions and internal sources and sinks are 
limited to sinusoidal-like axial distributions. 

In the early years of the U.S. gas centrifuge program Ging" concluded that there are no 
purely periodic eigenfunctions (i.e. pure imaginary eigenvalues) for the homogeneous, linearized 
gas centrifuge flow equations with curvature. Presumably this means that any unsustained 
disturbance in the centrifuge decays out due to viscosity. But herein we are solely concerned 
with sustained harmonic disturbances on the boundary, and it has just been shown that a high 
speed gas centrifuge driven by a pure harmonic responds in a purely harmonic fashion. 

PERTURBATION ANALYSIS: SEMI-LONG BOWL APPROXIMATION 

Construction of general and particular solutions for the derived inhomogeneous 0.d.e. system 
appears to be fraught with difficulty. Instead, we treat the simpler perturbation problem. This 
is possible due to the anisotropic nature of our governing partial differential equation. Define 
E = E = B N n / y O ,  such that 0 Q E < 1 (which clearly limits N ) .  Small E is achieved whether B -+ 0 
or yo + co (i.e. short decay length ratios and/or long machines). Now, we have a differential 
equation with a small parameter: 

J!d ,X(X)  - & ' X ( X )  = F ( x ) .  (1 1) 



398 SHORT COMMUNICATION 

Assuming an even-ordered power series expansion in the small positive parameter E, say 

and substituting into the 0.d.e. we obtain 

We call such an approximation the semi-long bowl solution since it derives from the long bowl 
solution. The large parameter limit, E >> 1, which is called the short bowl solution, will be discussed 
separately. 

Collecting like ordered terms in E in the usual manner, with F(x)=O, and postulating the 
general O ( c M )  problem gives: 

X M ( C 0 )  = xL(C0) = L , X M ( C o )  = 0. (14) 
All that we need to solve the O ( I ) - O ( E ~ )  problems is the Green’s function. Recall’ 

~ ( x ; x * )  = - +(e-’Xe-x* + e-Xe-’X* )+&,-2xe-zX*-  xe-x e -x’ + a(x* - x + 3)e-’*, x < x*, 

THE 0(&4) SOLUTION 

The leading order solution (i.e. basic solution) is just the long bowl result which is repeated here for 
reference: 

Using the ‘solving’ property gives 

x2(x) = [I G(x;C,x0(S)d5 = [ [; + [~]G(x:OxO(C)dT 

= J i G < X 0 +  J;G>xo. (17) 

Specifically, 

xz(x) = ~ L5x(0)(1292e-x - (864x + 831)e-’” - 192eC3” + (6x + 22)e-4x). (18) 13,824 

Comparing O( 1) terms with comparable O(E’) terms in x we notice that the numerical coefiicients 
of the O(E’) terms are smaller than the O(1) terms. This suggests that for pure thermal drive 
our series may have a radius of convergence greater than unity. The O ( E ~ )  corrections are 
computed by repeating this integration process but the complete expression is given for xxx only: 
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- L5x(0) [(1,336,906e4 - 7,752,000~’ + 41,472,000)e-” + ( - 3 , 6 1 4 , 2 5 0 ~ ~ ~  xxx = 82,944,000 

+ 20,736,000~’ x - 82,944,000~ + 2 15 ,005~~  - 792,000~’ - 4 1,472,000)e- 2x 

+ (- 1,938,000~~ + 10,368,000~~)e-~” + ( 1 4 4 , 0 0 0 ~ ~ ~  - 5 7 6 , 0 0 0 ~ ~ ~  + 378,500~~ 
- 1,824,000~’)e-~” + 8000~~e-’” - ( 9 0 ~ ~ ~  + 4 1 1 ~ ~ ) e - ~ ” ] .  (19) 

Generally, 

Thus a regular expansion can be derived to arbitrary order M, in theory, ‘simply’ by 
one-dimensional quadratures. Here we are limited only by the radius of convergence of our 
asymptotic series. This problem is perfectly well suited to Van Dyke’s techniq~e.~ 

ILLUSTRATIONS 

End effects are expected to produce axial flow taper as well as reduce the peak axial flow and 
simultaneously produce non-zero radial flow. The flow blockage behaviour associated with 
impermeable end caps is obvious. Such two-dimensional effects are not depicted here in the axial 
mass velocity profile for thermal drive plotted by MACSYMA8 (Figure 1 for L,x(O) = - 1 and 

A Epsilon =0, I Epsilon=l 
0 Epsilon=2 

I I I 

X 

Figure 1 .  Axial mass velocity profile for pure thermal drive, p0w/(4A4), with E = 0,1,2 
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E = 0,1,2). Comparing E = 0 with the 0 ( c 2 )  theory (not shown), we find about 3 per cent difference 
for E = 1 and a whopping 50 per cent for E = 2. The O(E’) theory is obviously invalid for E 2 2 
and the 0 ( e 4 )  theory appears not to have broken down. The best way to calculate the flow for 
E>> 1 is not using this semi-long bowl theory but rather using the short bowl theory, resulting 
in an entirely different set of equations. It is probably expecting too much for these two different 
regimes of E to overlap, resulting in a uniformly valid perturbation solution. 
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NOMENCLATURE 

A Stratification parameter 

ReS”’ 

E B N d Y O  

L6 Cex(exixx)xxlxx 

F(x,  y) ,  F(x)  Inhomogeneities 
L i  L61? + B2 i y y  

M 
N Number of half-cycles 
Pr Prandtl number 
R Universal gas constant 
Re Reynolds number 

Molecular weight, and order of expansion 

Reference temperature 
Wall velocity 
Scale heights variable 
Dimensionless axial co-ordinate 
Dimensionless rotor length 
Small expansion parameter, BNn/yO 
Amplitude of temperature variation 
Sidewall temperature gradient, - N d ( O ) / y 0  
Dimensionless axial velocity 
Master potential 
Stream function 
Multivariate function 
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